RGBD Tutorial

14210240041 Gu Pan

Image

RGB

YUV

Lab

Depth Image

RGB image

Depth image

Each pixel in depth image shows the distance to camera

Device

- Kinect
- Kinect2 (we use)
- SoftKinetic
- Leapmotion

Kinect

- Depth camera developed by Microsoft in 2010 for XBOX360
- Mainly for entertainment (Motion Sensing Game)

Kinect2

- A new version of Kinect published in 2014
- Two different type for Windows and XBOX

SoftKinectic

 Belgian company which develops gesture recognition hardware and software for real-time range imaging cameras

Leapmotion (后动)

 A small USB peripheral device which is designed to be placed on a physical desktop

Depth Image 3D Reconstruction

Depth Image shows the distance between object to camera

- 3D position of each pixel is the best
 - point cloud(点云)
 - triangular facet(面片)

Point Cloud of Depth Image

Triangular Facet of Depth Image

Depth Image Applications

- Depth feature
- Human pose recognition
- Semantic segmentation
- Salient region detection
- Hand tracking

Depth Feature

Depth comparison features:

$$f_{\phi}(I,x) = d_I \left(x + \frac{u}{d_I(x)} \right) - d_I \left(x + \frac{v}{d_I(x)} \right)$$

- $-d_{I}(x)$ is the depth at pixel x in image I
- $-\varphi = (u,v)$ describe offsets u and v

Human pose recognition

Real-time Human Pose Recognition in Parts from Single Depth Images, CVPR2011

Recognition body parts in depth image

Pose Recognition – Body part labeling

• 31 body parts: LU/RU/LW/RW head, neck, L/R shoulder, LU/RU/LW/RW arm, L/R elbow, L/R wrist, L/R hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R knee, L/R ankle, L/R foot (Left, Right, Upper, loWer)

Pose Recognition – Random Forest

- Each split node consists of a *depth feature* and threshold to classify pixel in image
- Each leaf node learned distribution $P_t(c|I,x)$ means the probability of pixel x belongs to body parts c

Pose Recognition – Joint Position

- *Mean-shift* to find center for each body part
- Density function:

$$f_c(\hat{x}) \propto \sum_{i=1}^N w_{ic} \exp\left(-\left|\left|\frac{\hat{x} - x_i}{b_c}\right|\right|^2\right)$$

• 3D Reconstruction for each center

Pose Recognition - Result

http://research.microsoft.com/en-us/projects/vrkinect/

RGB image

Depth image

Body part inferred

Body part position

Semantic Segmentation

 Divide image into regions which correspond to the objects of the scene

Semantic Segmentation - Formulation

The basic formulation is

Semantic Segmentation - Idea

$$E(c) = \sum_{i \in I} P(c_i | p_i) + \lambda_1 \sum_{(i,j) \in \epsilon} P(c_i, c_j | p_i, p_j) + \lambda_2 \left| \sum_{i} P(c_i, c_j | p_i, p_i, d(p_i), d(p_j)) \right|$$

pairwise depth potentials

same label but depth inconsecutive region

depth consecutive but different label region

Semantic Segmentation - Dataset

- NYU Depth Set V2
- http://cs.nyu.edu/~silberman/datasets/
 nyu_depth_v2.html

Hand Tracking

Tracking the Articulated Motion of Two Strongly Interacting Hands, CVPR2012

- Real-time tracking hands in video
- Not only estimate the position of hands but also construct hands model in 3D space

Hand Tracking – Hand Model

Construction and Animation of Anatomically Based Human Hand Models, SIGGRAPH

- There are 26 DoF(degree of freedom)
- 26 dimension feature show one hand in basic model

Hand Tracking - Objective

Our objective function

$$\underset{x}{\operatorname{argmin}} E(x, o, h) = ||M(x) - P(o)|| + \lambda L(x, h)$$

- x is 26DoF hand feature
- o is input RGBD image
- − *h* is tracking history
- M(.) and P(.) is the function translate variable into same feature space
- L(.) is self-constraint

Hand Tracking - PSO

 Particle Swarm Optimization is a randomized algorithms to find the approximate optimal parameter of objective function

Hand Tracking – Result

Hand Tracking – Some Problem

- Real-time
 - ICP-PSO
- Hand model for different hand
 - Robust Tracking
- Optimization Method
- Learning Method
- And so on

Q&A

THANKS